

Formica yessensis

A Supercolony is present along the coast of Hokkaido, Japan extended by budding, 45,000 interconnected nests over 2.7 km² contains 1 million queens, 306 million workers

Is it "better" to be social?

- Cost and benefit viewpoint
- Social behavior is not always adaptive (costs exceed benefits)
- What are some benefits of being social?

What is social?

- Most Insects interact
- Social: Live together in communities
- Two Categories
 - 1. Eusocial
 - Cooperative Brood Care
 - Overlapping Generations
 - Reproductive Division of Labor (polyethism)
 - 2. Subsocial

Some costs of being social

- Competition over food
- Disease risk can be greater
- Reproductive interference
- Whether the benefits outweigh the costs depends upon the <u>environment</u> and the particularities of individuals in the species.

Degrees of Sociality

- Solitary— only seek out each other for mating
- Subsocial—shows one of three social characteristics
- Quasisocial— members of the same generation use the same nest with cooperative brood care
- Semisocial— quasisocial, plus reproductive division of labor
- **Eusocial** cooperative brood care, overlapping generations, reproductive division of labor

Is it ... subsocial?

(sub = below)

If it ...

1. Aggregates

0

2. Has a division of labor

or

3. Cares for eggs or young after egg laying

... It is subsocial

Degrees of Sociality

• Solitary, e.g. some Halictid bees

Subsocial – Parental Care Without Nesting

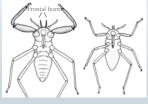
Giant Water Bugs

- Female oviposits on <u>male</u> dorsum
- Male tends eggs

• Adults guard early instar nymphs

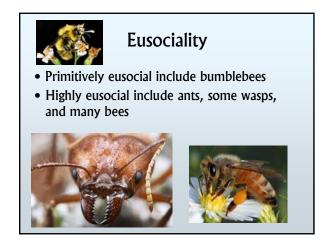
Result: Decrease in parasitism

Aggregations of Insects

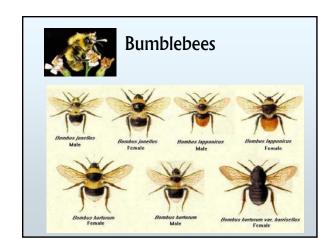

- Some bees build nest entrances close together, otherwise solitary
- Common among Aposematic insects
 - Examples
 - Monarchs
 - Gregarious larvae
- Share protection

Subsocial Aphids - Division of Labor

Soldier Morphs (Approx. 20 Species of aphids)



(Hemiptera: Aphididae)


Sterile soldier caste, but do not have overlapping generations that contribute to colony labor

Why are these soldiers apparently altruistic?

Why be nonreproductive??

Why be nonreproductive?? Inclusive fitness leads to Kin selection

What is a Eusocial insect? (eu = true) • Cooperative brood care • Overlapping generations • Reproductive division of labor (castes allow for multiple tasks: food foraging, queen and brood care, nest maintenance simultaneously)

Hymenoptera

Haplodiploidy

- Males are haploid (unfertilized egg)
 One set of chromosomes
- Females diploid (fertilized egg)
 Two sets of chromosomes

Haplodiploid insects share with their full sisters From Dad From Mom 50% x 100% 50% x 50% 50% + 25% = 75% (3/4)

Why Haplodiploidy encourages eusociality

- Parent and offspring normally share only 1/2 of their genes
- Haplodiploid sisters share 3/4 of their genes

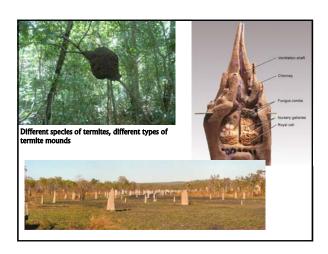
Bottom Line

They have more genes in common with FULL sisters than they would with their own daughters, so workers should invest more in their sisters than in the production of their own young.

Genetic predisposition for eusocial behavior

Coefficients of relationship (r)

	sister	brother	own son	own daughter
worker	0.75	0.25	0.50	0.50


Diploid insects share with their sisters & brothers

Yet, the evolution of eusociality does NOT require that sisters be more closely related to one another than to their brothers or their offspring

